Inorganic Solutes in Aqueous Solutions

» 1. Silver (I) ion

Silver (I) ion – Ag+ as AgClO4
Percival, P.W., Roduner, E. and Fischer, H. Adv. Chem. Ser. 1979, 175, 335; ed. by H.J. Ache, ACS, Washington DC, 1979.

Reaction:
Ag+ + Mu → Ag0 + µ +

Type of reaction: reduction – inferred by analogy with H atom

kM = 1.6 × 1010 dm3mol-1s-1 pH = 1.0
KIE = kM / kH = 1.6 × 1010 / 2.0 × 1010 = 0.8
kH = (2.0 ± 0.8) x 1010 dm3mol-1s<-1 average of 2 values

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 2. Cyanide ion

Cyanide ion –CN- as KCN

Stadlbauer, J.M., Ng, B.W., Jean, Y.C. and Walker, D.C. J. Phys. Chem., 1983, 87, 841.

Reaction:
CN- + Mu → MuCN-

Type of reaction: addition to CN bond

kM = 3 × 109 dm3mol-1s-1 pH = 1.0
KIE = kM / kH = 3 × 109 / 4 × 109 = 0.75
kH = 4.1 × 109 dm3mol-1s-1 pH = 7.0

from: Anbar, M., Farhataziz and Ross, A.B. NSRDS-NBS 51 Washington, 1975

» 3. Thiocyanate ion

Thiocyanate ion – SCN- as NaSCN

Jean, Y.C., Brewer, J.H., Fleming, D.G., Garner, D.M., Mikula, R.J., Vaz, L.C. and Walker, D.C. Chem. Phys. Lett., 1978, 57, 293.

Reaction:
SCN- + Mu → MuSCN-

Type of reaction: addition

kM = 6 × 107 dm3mol-1s-1
KIE = kM / kH = 6 × 107 / 2.3 × 108 = 0.25
kH = 2.3 × 108 dm3mol-1s-1 pH = 1.0

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 4. Tetracyanocadmate (II) ion

Tetracyanocadmate (II) ion [Cd(CN)4]2- as K2Cd(CN)4

Stadlbauer, J.M., Ng, B.W., Jean, Y.C. and Walker, D.C. J. Phys. Chem., 1983, 87, 841.

Reaction:
[Cd(CN)4]2- + Mu → ?

Type of reaction: addition to CN

kM = 1.7 × 1010 dm3mol-1s-1
Ea = (15 ± 2) kJ mol-1 for T = 273 K to 353 K
KIE = kM / kH < 1.7 × 1010 / 2.4 × 109 < 7
kH > 2.4 × 109 dm3mol-1s-1 at pH = 5

from: Anbar, M., Farhataziz and Ross, A.B NSRDS-NBS 51 Washington, 1975.

» 5. Chromate (VI) ion

Chromate (VI) ion – CrO42- as K2CrO4

Percival, P.W. Hyperfine Interact., 1981, 8, 315.

Reaction:
CrO42- + Mu → CrO42- + µ+

Type of reaction: reduction

kM = (2.4 ± 0.3) x 1010 dm3mol-1s-1
KIE = kM / kH = 2.4 × 1010 / 8.2 × 109 = p
kH = 8.2 × 109 dm3mol-1s-1 pH = 7 average of 2 value

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 6. Chromium (III) ion

Chromium (III) ion – Cr3+ as CrCl­3

Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

Reaction:
Cr3+ + Mu (↑↑) → Cr3+ + Mu(↑↓)

Type of reaction: presumed largely spin exchange

kM = 5.3 × 109 dm3mol-1s-1
KIEobs = kM / kH = 5.3 × 109 / 2 × 17 = 260
KIE indicates different type of reaction for Mu and H atoms
kH = 2 × 109 dm3mol-1s-1 pH = 3.5 – 5 average of 2 values

from: Anbar, M., Farhataziz and Ross, A.B. NSRDS-NBS 51 Washington, 1975.

» 7. Hexaaquachromium (III) ion

Hexaaquachromium (III) ion – [Cr(H2O)6]3+

Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.

Reaction:
[Cr(H2O)6]3+ + Mu (↑↑) → [Cr(H2O)6]3+ + Mu (↑↓)

Type of reaction: spin exchange

kM = (8 ± 1) x 109 dm3mol-1s-1
kH – unknown
KIE – not available

» 8. Pentaaquachlorochromium (III) ion

Pentaaquachlorochromium (III) ion – [Cr(H2O)5Cl]2+

Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.

Reaction:
[Cr(H2O)5Cl]2+ + Mu (↑↑) → [Cr(H2O)5Cl]2+ + Mu (↑↓)

Type of reaction: spin exchange

kM = (7.5 ± 1.5) x 109 dm3mol-1s-1
kH – unknown
KIE – not available

» 9. Aqua(ethylenediaminetetracetate)chromium (III) ion

Aqua(ethylenediaminetetracetate)chromium (III) ion – [Cr(EDTA)H2O]-

Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.

Reaction:
[Cr(EDTA)H2O)]- + Mu (↑↑) → [Cr(EDTA)H2O]- + Mu (↑↓)

Type of reaction: spin exchange

kM = (1.2 ± 0.4) x 1010 dm3mol-1s-1
kH – unknown
KIE – not available

» 10. Hexaamminechromium (III) ion

Hexaamminechromium (III) ion – [Cr(NH3)6]3+

Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.

Reaction:
[Cr(NH3)3]3+ + Mu (↑↑) → [Cr(NH3)6]3+ + Mu (↑↓)

Type of reaction: spin exchange

kM = (9 ± 1) x 109 dm3mol-1s-1
kH – unknown
KIE – not available

» 11. Diaquabis(ethylenediamine)chromium (III) ion

Diaquabis(ethylenediamine)chromium (III) ion as [Cr(en)2(H2O)2]2(S2O6)3

Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.

Reaction:
[Cr(en)(H2O)2]3+ + Mu (↑↑) → [Cr(en)2(H2O)2]3+ + Mu (↑↓)

Type of reaction: spin exchange

kM = 1.05 × 1010 dm3mol-1s-1
kH – unknown
KIE – not available
Anion S2O22- present in this complex could possibly react with Mu therefore kM observed might be the upper limit

» 12. Tris (ethylenediamine) chromium (III) ion

Tris (ethylenediamine) chromium (III) ion – [Cr(en)3]3+

Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.

Reaction:
[Cr(en)3]3+ + Mu (↑↑) → [Cr(en)3]3+ + Mu (↑↓)

Type of reaction: spin exchange

kM = (7.3 ± 2) x 109 dm3mol-1s-1
KH – unknown
KIE – not available

» 13. Diamminetetra(thiocyanato-N) chromium (III) ion

Diamminetetra(thiocyanato-N) chromium (III) ion – [Cr(NCS)4(NH3)2]-

Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.

Reaction:
[Cr(NCS)4(NH3)2]- + Mu (↑↑) → [Cr(NCS)4(NH3)2]- + Mu (↑↓)

Type of reaction: spin exchange

kM = (2.7 ± 0.5) x 1010 dm3mol-1s-1
KH – unknown
KIE – not available

» 14. Hexa(thiocyanato-N)chromium (III) ion

Hexa(thiocyanato-N)chromium (III) ion [Cr(NCS)6]3- as K3[Cr(NCS)6]

Stadlbauer, J.M., Venkateswaran, K., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1997, 101, 4741.

Reaction:
[Cr(NCS)6]3- + Mu (↑↑) → [Cr(NCS)6]3- + Mu (↑↓)

Type of reaction: spin exchange

kM = (3.1 ± 0.4) x 1010 dm3mol-1s-1
KH – unknown
KIE – not available

» 15. Copper (II) ion

Copper (II) ion – Cu2+ as CuSO4

Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

Reaction:
Cu2+ + Mu (↑↑) → Cu2+ + Mu (↑↓)
Cu2+ + Mu → Cu+ + µ+

Type of reaction: spin exchange and possibly also reduction

kMobs =( 6.5 ± 1.0) x 109 dm3mol-1s-1
KIE = kMobs / kH­ = 6.5 × 109 / 9.1 × 107 = 70
KIE value might indicate different type of reactions for Mu and H atoms
kH = 9.1 × 107 dm3mol-1s-1 average of 3 values

» 16. Iron (II) ion

Iron (II) ion – Fe2+ as (NH4)2Fe2(SO4)3

Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

Reaction:
Fe2+ + Mu (↑↑) → Fe2+ + Mu (↑↓)
Fe2+ + Mu → Fe+ + µ+ or ( FeMu2+ )

Type of reaction: predominantly spin exchange and possibly (?) also reduction

kM = 1.2 × 1010 dm3mol-1s-1
KIE = kM / kH = 1.2 × 1010 / 7.5 × 106 = 1600
KIE value do indicate different type of reactions for Mu and H atoms
kH = 7.5 × 106 dm3mol-1s-1 pH = 0

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 17. Ferrocyanide ion

Ferrocyanide ion [Fe(CN)6]4-, hexacyanoferrate (II) as K4Fe(CN)6

Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

Reaction:
[Fe(CN)6]4- + Mu → ?

Type of reaction: reduction or addition to CN-

kM = 3.05 × 108 dm3mol-1s-1
KIE = kM / kH = 3.0 × 108 / 3.9 × 107 » 8
kH = 3.9 x 107 dm3mol-1s-1

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 18. Iron (III) ion

Iron (III) ion – Fe3+ as Fe(NH4)(SO4)2

Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

Reaction:
Fe3+ + Mu (↑↑) → Fe3+ + Mu (↑↓)

Type of reaction: predominantly spin exchange with small contribution of reduction

kMobs = 5.5 × 109 dm3mol-1s-1
KIE = kMobs / kH = 5.5 × 109 / 1.4 × 106 » 4000
KIE value do indicate different type of reactions for Mu and H atoms
kH = 1.4 × 106 dm3mol-1s-1 average of 2 values

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 19. Ferricyanide ion, hexacyanoferrate (III) ion

Ferricyanide ion, hexacyanoferrate (III) ion – [Fe(CN)6]3-

Reaction:
[Fe(CN)6]3- + Mu → ?

Type of reaction: reduction with small contribution of spin exchange (?)

a) Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

kM = 2 × 1010 dm3mol-1s-1 at pH = 7

b) from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.

kM = 3.2 × 1010 dm3mol-2s-1 at pH = 1 (small pH effect)
KIE = kMobs / kH = 2 × 1010 / 6.3 × 109 » 3 at pH = 7
KIE = 3.2 × 1010 / 6.3 × 109 » 5 at pH = 1
kH = 6.3 × 109 dm3mol-1s-1 selected value from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

Muonium reactions in the micellar systems

kM = 2 × 1010 dm3mol-1s-1 in the NaOSA micelles

from: Jean, Y.C., Ng, B.W., Stadlbauer, I.M. and Walker, D.C., J. Chem. Phys., 1981, 75, 2879.

» 20. Mercury (II) chloride

Mercury (II) chloride – HgCl2

Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

Reaction:
HgCl2 + Mu → HgCl + m+ + Cl- as proposed for H atom reaction

Type of reaction: reduction (?)

kM = 2.0 × 109 dm3mol-1s-1
KIE = kM / kH = 2 × 109 / 1 × 1010 = 0.2
kM = (1 ± 0.5) x 1010 dm3mol-1s-1

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 21. Iodine

Iodine – I2
Jean, Y.C., Ng, B.W., Ito, Y., Nguyen, T.G. and Walker, D.C. Hyperfine Interact., 1981, 8, 351.

Reaction:
I2 + Mu → MuI + I
I2 + Mu → m+ + I2-

Type of reaction: abstraction or reduction

kM = (1.7 ± 0.3) x 1010 dm3mol-1s-1
KIE = kM / kH = 1.7 × 1010 / 3.5 × 1010 = 0.5
kH = 3.5 × 1010 dm3mol-1s-1

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

Muonium reactions in the micellar systems
kM = (4.1 ± 1.0) x 1010 dm3mol-1s-1 in the NaOSA micelles
kM = (4.0 ± 0.9) x 1010 dm3mol-1s-1 in the NaHS micelles
kM = (5.0 ± 0.8) x 1010 dm3mol-1s-1 in the NaLS micelles

from: Jean, Y.C., Ng, B.W., Stadlbauer, I.M. and Walker, D.C., J. Chem. Phys., 1981, 75, 2879.

» 22. Triiodine ion

Triiodine ion – I3- as KI3

Jean, Y.C., Ng, B.W., Ito, Y., Nguyen, T.G. and Walker, D.C. Hyperfine Interact., 1981, 8, 351.

Reaction:
I3- + Mu → I- + I2- + µ+

Type of reaction: ?

kM = (5.9 ± 1.2) x 1010 dm3mol-1s-1
KIE = kM / kH = 5.9 × 1010 / 2.2 × 1010 = 2.7
kH = 2.2 × 1010 dm3mol-1s-1 average from all values in: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 23. Iodide ion

Iodide ion – I- as KI or NaI

Reaction:
I- + Mu ↔ MuI-

Type of reaction: addition (based on H-atom scheme)

a) Bartels, D.M. and Roduner, E. Chem. Phys., 1996, 203, 339.

kM = 5.3 × 107 dm3mol-1s-1
Ea » 0 kJ/mol-1 (EA = -5.6 ± 1.8 kJ/mol) for T=278 to 363K
KIEM/H = kM / kH = 5.3 × 107 / 2.8 × 108 = 0.20
KIEM/D = kH/kD = 5.3 × 107 / 3.2 × 108 = 0.16

b) Jean, Y.C., Ng, B.W., Ito, Y., Nguyen, T.G. and Walker, D.C. Hyperfine Interact., 1981, 8, 351.

kM = (7 ± 1) x 107 dm3mol-1s-1
KIE = kM / kH = 7 × 107 / 3.4 × 108 = 0.25
kH = (2.8 ± 0.4) x 108 dm3mol-1s-1
kD = 3.2 × 108 dm3mol-1s-1

from: Bartels, D.M. and Roduner, E. Chem. Phys., 1996, 203, 339.

» 24. Permanganate ion

Permanganate ion – MnO4- as KMnO4

Reaction:
MnO4- + Mu → [MnO4]2- + µ+

Type of reaction: electron transfer reduction

a) Percival, P.W., Roduner, E. and Fischer, H. Adv. Chem. Ser. 1979, 175, 335; ed. by H.J. Ache, ACS, Washington DC, 1979.

kM = 2.5 × 1010 dm3mol-1s-1 pH =7.0

b) Ng, B.W., Jean, Y.C., Ito, Y., Suzuki, T., Brewer, J.H., Fleming, D.G. and Walker, D.C. J. Phys. Chem., 1981, 85, 454.

kM = 2.5 × 1010 dm3mol-1s-1 pH =7.0
A = (3.5 ± 0.3) x 1013
dm3mol-1s-1
Ea = (18.4 ± 1.7) kJ mol-1 for: T = 276 K to 361 K

c) Barnabas, M.V. and Walker, D.C. Can. J. Chem., 1991, 69, 1252.

kM = 1.7 × 1010 dm3mol-1s-1 pH =1.0 (small influence of pH)
KIE = kM / kH = 2.5 × 1010 / 2.4 × 1010 = 1.0 at pH = 7.0
KIE = kM / kH = 1.7 × 1010 / 2.4 × 1010 = 0.7 at pH = 1.0
kH ≤ 2.4 × 1010dm3mol-1s-1 at pH = 3 from: www.rcdc.nd.edu/compilations/Hatom/H.HTM

Muonium reactions at high pressures:

kM values decrease with pressure applied (up to 2 kbars)
Activation volume calculated: DV¹ = 3.1 ± 1.6 cm3mol-1 for Mu + KMnO4
DV¹ = 2 cm3mol-1 for H + KMnO4

from: Brodovitch, J-C., Leung, S-K., Percival, P.W., Dake Yu. and Newman, K.E. Radiat. Phys. Chem., 1988, 1, 105.

» 25. Nitrous oxide

Nitrous oxide

Venkateswaran, K., Barnabas, M., Wu, Z. and Walker, D.C. Radiat. Phys. Chem., 1988, 32, 65.

Reaction:
N2
O + Mu → N2 + MuO

Type of reaction: abstraction of O (by analogy to H atom reaction)

kM = 6.5 × 107 dm3mol-1s-1 KIE = kM / kH = 6.5 × 107 / 2.1 × 106 = 30
kH = 2.1 × 106 dm3mol-1s-1 (in alkaline solution)

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 26. Nitrate ion (III)

Nitrate ion NO3- as NaNO3

Reaction:
NO3- + Mu → [MuNO3-] → ( ? ) NO3- + Mu → NO2 + MuO- ( ? )

Type of reaction: ?

a) Percival, P.W., Roduner, E., Fischer, H., Camani, M., Gygax, F.N.and Schenck, A. Chem. Phys. Lett., 1973, 47, 11.

kM = 1.5 x 109 dm3mol-1s-1

b) B.W., Jean, Y.C., Ito, Y., Suzuki, T., Brewer, J.H., Fleming, D.G. and Walker, D.C. J. Phys. Chem., 1988, 85, 454.

kM = 1.5 × 109 dm3mol-1s-1 pH = 7.0
Ea = (6.3 ± 1.2) kJ mol-1 A = (2.1 ± 0.2) x 1010 dm3mol-1s-1 for T = 274 K to 365 K

c) Barnabas, M.V. and Walker, D.C. Can. J. Chem., 1991, 69, 1252.

kM = 1.9 × 109 dm3mol-1s-1 pH = 1.0 (no effect of pH)
KIE = kM / kH = 1.5 × 109 / 5.6 × 106 = 270 at pH = 1.0 and pH = 7.0
kH = 5.6 × 106 dm3mol-1s-1 at pH = 1.0
log(A/dm3mol-1s-1) = 15.28 ± 0.16 Ea = (48.7 ± 1.0) kJ mol-1 for T = 288 to 358 K
kH , A and EA

from: Mezyk, S.P. and Bartels, D.M. J. Phys. Chem., 1997, 101, 6233.

Muonium reactions in the micellar systems:

kM = 0.8 × 109 dm3mol-1s-1 in the SDDS micelles
kM = 3.7 × 109 dm3mol-1s-1 in the DDTAB micelles
kM = 1.5 × 109 dm3mol-1s-1 in the pEO micelles

from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.

» 27. Nitrite ion

Nitrite ion – NO2-

Karolczak, S., Gillis, H.A., Porter, G.B. and Walker, D.C. Can. J. Chem, 2003, 81, 175.

Reaction:
NO2/font> + Mu → Mu NO2 as proposed for H atoms

Type of reaction: addition (combination)

kM = (8 ± 1.5) x 109 dm3mol-1s-1
KIE = kM / kH = 8 × 109 / 1.6 × 109 = (5 ± 1)
kH = 1.6 × 109dm3mol-1s-1 log[A(dm3mol-1s-1)] = 11.94 ± 0.06
Ea = (15.59 ± 0.36) kJ/mol-1 for T = 280 K to 360 K

» 28. Nickel (II) ion

Nickel (II) ion Ni2+ as NiSO4

Reaction:
Ni2+ + Mu (↑↑)→ Ni2+ + Mu (↑↓)

Type of reaction: spin conversion

a) Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.

kMobs = 1.7 × 1010 dm3mol-1s-1

b) Ng, B.W., Jean, Y.C., Ito, Y., Suzuki, T., Brewer, J.H., Fleming, D.G. and Walker, D.C. J. Phys. Chem., 1981, 85, 454.

A = (0.9 ± 0.2) x 1013 dm3mol-1s-1 EA = 16.0 ± 2.5 kJ mol-1
KIE = kMobs / kH > 1.7 × 1010 / 3 × 105 > 5 × 104

KIE do indicate different type of reactions

kH < 3 × 105 dm3mol-1s-1 at pH natural, (limiting value)

from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM

» 29. Tetraamminenickel (II) ion

Tetraamminenickel (II) ion – [Ni(NH3)4]2+
Reaction: [Ni(NH3)4]2+ + Mu (↑↑) → [Ni(NH3)4]2+ + Mu (↑↓)
Ni2+ ion in the form of paramagnetic tetrahedral complex
Type of reaction: spin exchange
kM = 1.5 × 1010 dm3mol-1s-1 in 1M NH3 solution
kH – unknown
KIE – not available

» 30. 1,4,8,11-Tetraazacyclotetradecanenickel (II) ion, cyclamnickel (II) ion

1,4,8,11-Tetraazacyclotetradecanenickel (II) ion, cyclamnickel (II) ion – [Ni(cyclam)]2+
as [Ni(cyclam)]2
PF6

Stadlbauer, J.M., Ng, B.W., Jean,Y.C. and Walker, D.C
J.Am.Chem.Soc. 1983, 105, 752
Reaction: [Ni(cyclam)]2+ + Mu → Ni[(cyclam)]+ + µ+
Ni2+ ion in the form of diamagnetic planar complex
Type of reaction: reduction (electron transfer) by analogy to H-atom reaction
kM = 5 × 108 dm3mol-1s-1
kH – unknown for this specific complex but determined for similar solute
5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclo-tetradecanenickel (II) ion
kH = 3.2 × 108 dm3mol-1s-1 from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
KIE = kM / kH­ = 5 × 108 / 3.2 × 108 = 1.5

» 31. 1,4,8,12-Tetraazacyclotetradecanediamminonickel (II) ion - Diamminocyclamnickel (II) ion

1,4,8,12-Tetraazacyclotetradecanediamminonickel (II) ion – Diamminocyclamnickel (II) ion – [Ni(cyclam)(NH3)2]2+
Stadlbauer, J.M., Ng, B.W., Jean,Y.C. and Walker, D.C
J.Am.Chem.Soc. 1983, 105, 752
Reaction: [Ni(cyclam)(NH3)2]2+ + Mu (↑↑) → [Ni(cyclam)(NH3)2]2+ + Mu (↑↓)
Ni2+ ion in the form of paramagnetic octahedral complex
Type of reaction: spin exchange
kM = 2 × 1010 dm3mol-1s-1
kH – unknown
KIE – not available

» 32. 1,4,8,12-Tetraazacyclotetradecanediaquanickel (II) ion, cyclamdiaquanickel (II) ion

1,4,8,12-Tetraazacyclotetradecanediaquanickel (II) ion,
cyclamdiaquanickel (II) ion – [Ni(cyclam)(H2O)2]2+

Stadlbauer, J.M., Ng, B.W., Jean,Y.C. and Walker, D.C
J.Am.Chem.Soc. 1983, 105, 752
Reaction: Ni[(cyclam)(H2O)2]2+ + Mu (↑↑) → Ni[(cyclam)(H2O)2]2+ + Mu (↑↓)
Ni2+ ion in the form of paramagnetic octahedral complex
Type of reaction: spin exchange
kM = 4.5 × 1010 dm3mol-1s-1
KIE = unknown
accepting k (H + Ni2+) < 3 × 105 dm3mol-1s-1 from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
leads to KIE > 105 which manifests different type of reactions

» 33. Hydroxide ion

Hydroxide ion – OHaq- as NaOH or KOH
Reaction: OHaq- + Mu → MuOH + eaq-

Type of reaction: acid, m+ transfer
a) Percival, P.W., Roduner, E., Fischer, H., Camani, M., Gygax, F.N. and Schenck, A. Chem. Phys. Lett., 1973, 47.
kM = (9.1 ± 1.2) x 106 dm3mol-1s-1 [OH-]max = 0.38 M
kM – calculated on the basis of activities rather than molar concentration
b) Percival, P.W., Roduner, E. and Fischer, H. in Adv. Chem. Ser. 1979, 175, 335; ed. by H.J. Ache, ACS, Washington DC, 1979.
kM = 1.7 × 107 dm3mol-1s-1 pH range not stated
c) Ng, B.W., Stadlbauer, J.M. and Walker, D.C. J. Phys. Chem., 1984, 88, 857.
kM = 1.7 × 107 dm3mol-1s-1 [OH]max = 0.08 M
A = (2.4 ± 0.1) x 1014 dm3mol-1s-1
EA = (40 ± 5) kJ mol-1 for T = 247 K to 357 K
KIE = kM / kH = 1.7 × 107 / 2.5 × 107 » 0.7
kH = (2.51 ± 0.44) x 107 dm3mol-1s-1 A = (1.33 ± 0.16) x 1014 dm3mol-1s-1)
EA = (38.38 ± 0.31) kJ mol-1 for T ~ 286 K to 345 K
from: Han, P. and Bartels, D.M., J. Phys. Chem., 1992, 96, 4899.
latest entry to: www.rcdc.nd.edu/compilations/Hatom/H.HTM

» 34. Deuterium peroxide

Deuterium peroxide – D2O2
Percival, P.W., Brodovitch, J.C. and Newman, K.E.
NBS Special Publication (US) 1986, 716, 547.
Reaction: D2O2 + Mu → MuD + DO2 D2O2 + Mu ® MuO + D2O2
Type of reaction: abstraction of D or O (abstraction of D proposed to D atom reaction)
kM = 1.4 x 109 dm3mol-1s-1 pH = 2.6
Ea » 11kJ mol-1
KIE = kM / kD = 1.4 × 109 / 2.3 × 107 = 60
kD = (2.30 ± 0.10) x 107 dm3mol-1s-1; log (A/dm3mol-1s-1) = 10.37 ± 0.10
Ea = 25.6 kJ mol-1 for T = 283 K to 343 K
kD, A and Ea from: Mezyk, S.P., and Bartels, D.M. J. Chem. Soc.Faraday Trans., 1995, 91, 3127.

» 35. Hydrogen peroxide

Hydrogen peroxide – H2O2
Percival, P.W., Brodovitch, J.C. and Newman, E.
NBS – Special Publication (U.S.), 1986, 716, 547.
Reaction: H2O2 + Mu → MuH + HO2
H2O2 + Mu → MuO + D2O
Type of reaction: abstraction of H or O (H atom abstraction proposed for H atom reaction)
kM = 1.65 × 109 dm3mol-1s-1 pH ~ 3.0
Ea = 5.8 kJ mol--1 for T = 275K to 322K
KIE = kM / kH = 1.65 × 109 / 4.6 × 107 ≈ 36
kH = (4.6 ± 0.1) x 107 dm3mol-1s-1 average of three latest values from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
Ea given in the Notre Dame Data Base varies from 11 kJ mol-1 to 21 kJ mol-1

» 36. Oxygen

Oxygen – O2 a. Roduner, E., Tregenna-Pigott, P.L.W., Digler, H., Ehrensberger, K. and Senba, M.
J. Chem. Soc., Faraday Trans., 1995, 91, 1935.
Reaction: O2 + Mu + (↑↑) ® Mu (↑↓)+ O2 kSE
O2 + Mu ® MuO2 kCR
Type of reaction: spin exchange (SE) and chemical reaction (CR) kSE >> kCR
kMobs = (1.8 ± 0.1) x 1010 dm3mol-1s-1 at 297 K
kMobs = (3.3 ± 0.3) x 1010 dm3mol-1s-1 at 318 K
kMobs = (4.8 ± 0.6) x 1010 dm3mol-1s-1 at 343 K
kMobs = (4.3 ± 0.9) x 1010 dm3mol-1s-1 at 358 K
Ea » 2.6 kJ mol-1 calculated on the basis of authors's data (4 points)
Experimental method: MSR in transverse and longtidual fields for separation chemical process and spin exchange
b) Jean, Y.C., Fleming, D.G., Ng, B.W. and Walker, D.C. Chem. Phys. Lett., 1979, 66, 187.
Reaction: O2 + Mu (↑↑) ® Mu (↑↓)+ O2 – spin exchange
Mu + O2 ® MuO2 (or m+ + O2-, or MuO + O) chemical reaction
kMobs= (2.4 ± 0.5) x 1010 dm3mol-1s-1
kMobs= (2.1 ± 0.5) x 1010 dm3mol-1s-1 average from ref a) and b)
KIE = kMobs / kH = 2.1 × 1010 / 1.2 × 1010 = 1.8
if latest value kH =2 × 1010 dm3mol-1s-1 is taken, then
KIE = kMobs / kH = 2.1 × 1010/ 2.0 × 1010 » 1
kH = 2.0 × 1010 dm3mol-1s-1
from: Han, P. and Bartels, D.M. in Ultrafast Reaction Dynamics ed. Gauduel, Y. and Rossky, P.J., AIP Conference Proceedings 298, American Institute of Physics, N.Y. 1991.(latest value published)
kH = 1.2 × 1010 dm3mol-1s-1 selected value from: www.rcdc.nd.edu/compilations/Hatom/H.HTM

» 37. Thiosulphate ion

Thiosulphate ion – S2O32- as Na2S2O3
Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C.
Can. J. Chem., 1988, 66, 1979.
Reaction: S2O32- + Mu → ?
Type of reaction: ?
kM = 2.6 × 1010 dm3mol-1s-1
kH – unknown
KIE – not available
Muonium reactions in the micellar systems
kM = 2.1 × 1010 dm3mol-1s-1 in the SDDS micelles; average of 3 values
from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.

» 38. Thallium (I) ion

Thallium (I) ion – Tl+ as Tl2SO4
Jean, Y.C., Brewer, J.H., Fleming, D.G., Garner, D.M., Mikula, R.J., Vaz, L.C.
and Walker, D.C. Chem. Phys. Lett., 1978, 57, 293.
Reaction: Tl+ + Mu → Tl° + m+
Type of reaction: reduction (electron transfer)
kM = 8 x 108 dm3mol-1s-1
KIE = kM / kH = 8 × 108 / 4 × 107 = 20
kH = 4.1 × 107 dm3mol-1s-1 average of 2 values
from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
Muonium reactions in the micellar systems
kM = 3.2 × 109 dm3mol-1s-1 in the SDDS micelles; [Tl+] = 0.4 mM [SDDS] = 0.5 mM
from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.

» 39. Deuteroperoxyanion

Deuteroperoxyanion – DO2-
Percival, P.W., Brodovitch, J.C. and Newman, K.E.
NBS Special Publication (US) 1986, 716, 547.

Reaction:
DO- + Mu → MuD + O-

DO- + Mu ® MuO + OD-

Type of reaction: D or O abstraction (D abstraction proposed for D atom reaction)

kM = 4.5 x 109 dm3mol-1s-1 pH = 12.6
E = 10.5 kJ mol-1
KIE = kM / kD = 4.5 × 109 / 2.1 × 109 = 2
kD = 2.12 × 109 dm3mol-1s-1

from: Mezyk, S.P., and Bartels, D.M. J. Chem. Soc.Faraday Trans., 1995, 91, 3127

» 40. Hydroperoxyanion

Hydroperoxyanion – HO2-
Percival, P.W., Brodovitch, J.C. and Newman, E.
NBS – Special Publication (U.S.), 1986, 716, 547.

Reaction:
HO2- + Mu → MuH + O2-

HO2- + Mu → MuO + OH-

Type of reaction: abstraction of H or O

kM = 5.0 × 109 dm3mol-1s-1 pHmax = 12.4
Ea = 10.5 kJ mol-2
KIE = kM / kH = 5.0 × 109 / 1.25 × 109 = 4
kH = (1.24 ± 0.14) x 109 dm3mol-1s-1 at pH = 11.5 log A (dm3mol-1s-1) = 13.65 ± 0.30
EA = (17.3 ± 0.6) kJ mol-1 for T = 280 K to 315 K

from: Mezyk, S.P. and Bartels, D.M. J. Chem. Soc. Faraday Trans., 1995, 91, 3127.

Print this page   |   Top